Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins.
نویسندگان
چکیده
The interaction between cells and the extracellular matrix (ECM) is essential during development. To elucidate the function of ECM proteins on cell differentiation, we developed biomimetic surfaces that display specific ECM peptide motifs in a controlled manner. Presentation of ECM domains for collagen, fibronectin, and laminin influenced the formation of neurites by differentiating PC12 cells. The effect of these peptide sequences was also tested on the development of adult neural stem/progenitor cells. In this system, collagen I and fibronectin induced the formation of beta-III-tubulin positive cells, whereas collagen IV reduced such differentiation. Biomimetic surfaces composed of multiple peptide types enabled the combinatorial effects of various ECM motifs to be studied. Surfaces displaying combined motifs were often predictable as a result of the synergistic effects of ECM peptides studied in isolation. For example, the additive effects of fibronectin and laminin resulted in greater expression of beta-III-tubulin positive cells, whereas the negative effect of the collagen IV domain was canceled out by coexpression of collagen I. However, simultaneous expression of certain ECM domains was less predictable. These data highlight the complexity of the cellular response to combined ECM signals and the need to study the function of ECM domains individually and in combination.
منابع مشابه
Functional enhancement of neuronal cell behaviors and differentiation by elastin-mimetic recombinant protein presenting Arg-Gly-Asp peptides
BACKGROUND Integrin-mediated interaction of neuronal cells with extracellular matrix (ECM) is important for the control of cell adhesion, morphology, motility, and differentiation in both in vitro and in vivo systems. Arg-Gly-Asp (RGD) sequence is one of the most potent integrin-binding ligand found in many native ECM proteins. An elastin-mimetic recombinant protein, TGPG[VGRGD(VGVPG)6]20WPC, r...
متن کاملBio-adhesive surfaces to promote osteoblast differentiation and bone formation.
Binding of integrin adhesion receptors to extracellular matrix components, such as fibronectin and type I collagen, activates signaling pathways directing osteoblast survival, cell-cycle progression, gene expression, and matrix mineralization. Biomimetic strategies exploit these adhesive interactions to engineer bio-inspired surfaces that promote osteoblast adhesion and differentiation, bone fo...
متن کاملScutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells
Objective(s): Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. Materials and Methods: Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitiv...
متن کاملWell-defined biomimetic surfaces to characterize glycosaminoglycan-mediated interactions on the molecular, supramolecular and cellular levels.
Glycosaminoglycans (GAGs) are ubiquitously present at the cell surface and in extracellular matrix, and crucial for matrix assembly, cell-cell and cell-matrix interactions. The supramolecular presentation of GAG chains, along with other matrix components, is likely to be functionally important but remains challenging to control and to characterize, both in vivo and in vitro. We present a method...
متن کاملMimicking bone extracellular matrix: integrin-binding peptidomimetics enhance osteoblast-like cells adhesion, proliferation, and differentiation on titanium.
Interaction between the surface of implants and biological tissues is a key aspect of biomaterials research. Apart from fulfilling the non-toxicity and structural requirements, synthetic materials are asked to direct cell response, offering engineered cues that provide specific instructions to cells. This work explores the functionalization of titanium with integrin-binding peptidomimetics as a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2010